

New Parallel Matrix Multiplication Algorithms for

Wormhole-Routed All-Port 2D/3D Torus Networks

Cesur Baransel

1
, Kayhan İmre

2
, and Harun Artuner

2

1
Saltus Yazılım Ltd.

Hacettepe University Technopolis, Ankara, TURKEY
cesur@saltus.com.tr

2
Hacettepe University,

Dept. of Computer Engineering, Ankara, TURKEY
{ki,artuner}@hacettepe.edu.tr

Abstract-New matrix multiplication algorithms are proposed for massively

parallel supercomputers with 2D/3D, all-port torus interconnection networks.

The proposed algorithms are based on the traditional row-by-column multip-

lication matrix product model and employ a special routing pattern for better

scalability. They compare favorably to the variants of Cannon’s and DNS al-

gorithms since they allow matrices of the same size to be multiplied on a

higher number of processors due to lower data communication overhead .

Keywords-Fast Matrix Multiplication, Parallel Processing, Torus Intercon-

nection Networks, 2D Torus, 3D Torus.

1. Introduction

Matrix multiplication is one of the most prevalent operations in scientific computing and its

effective parallelization is of utmost importance for being able to harness the processing

power offered by massively parallel supercomputers. Matrix multiplication can be formu-

lated according to two general classes of computational models. In the first class, the matrix

product can be defined as a row-by-column multiplication and for C=AB, C(i,j) is the dot

product of the i
th

row vector of A and j
th

 column vector of B. It is also possible to define the

matrix product as sum of a series of column-row products. Assuming that A and B are of

order nn, both definitions require the same number of multiplications, namely n
3
. The

second class is comprised of the algorithms
1
 aimed to reduce the number of multiplications

such as the algorithms proposed by Strassen [6] and Winogard [7]. In this paper, we pro-

pose new matrix multiplication algorithms for 2D/3D torus topology where matrix product

is defined as a row-by-column multiplication. A special routing pattern for 2D/3D tori is

integrated into the proposed multiplication algorithms for efficiently exploiting the availa-

ble bandwidth to provide higher scalability. Torus has proved to be the most popular topol-

ogy in industry over the years and modern massively parallel supercomputers such as IBM

1
 A review of these methods can be found in Chapter 47, Handbook of Linear Algebra [1].

BARANSEL, İMRE, ARTUNER

Blue Gene®/L and CRAY XT3 employ 2D/3D torus interconnection networks to accom-

modate tens of thousands of processing elements (PE).

This paper is structured as follows. A short review of the previous work is provided in the

next section. We will give the details of the proposed algorithms in Section 3. Section 4

provides the performance results. Paper ends with conclusions.

2. Previous Work

Assume two matrices A and B, both of size nn, are mapped
2
 onto a 2D array of p

processing elements (PEs), arranged as a pp  torus with (p<n
2
). Consequently, each PE

stores a separate block of (n
2
/p) entries from matrices A, B and C, where C=AB. Since,

computing C(i,j) requires the i
th

row vector of A and j
th

 column vector of B, a simple paral-

lel matrix multiplication algorithm can be defined as follows;

1. perform an all-to-all broadcast within each row,

2. perform an all-to-all broadcast within each column,

3. perform required multiply-and-add operations.

Under all-port model, column and row broadcasts can be executed in parallel. Broadcast-

ing a block within a row or column takes  p
3

log steps to complete and there are p blocks

to broadcast within each row or column. After the broadcasting phase is completed, each

PE will have 







pn

2 matrix entries and will perform (n
3
/p) multiply-and-add operations.

Assuming a multiply-and-add operation takes unit time, the parallel cost Tpar of the algo-

rithm is given in Equation (1),

p

n
t

p

n
tppT

wspar

32

3
)(log  (1)

where ts and tw represent the message startup time and the time to transmit a single matrix

entry, respectively. Note that it is possible to reduce the cost by properly interleaving and

overlapping broadcast and multiply-and-add operations. However, the above algorithm is

not memory efficient since it consumes p times more space compared to the serial imple-

mentation.

Cannon proposed a memory-efficient matrix algorithm which takes p2 steps to com-

plete, including the initial and final alignment steps in [2]. Since this algorithm is explained

elsewhere [3], its details will not be repeated here. Cannon’s algorithm has the following

phases on 2D torus;

1. the initial alignment; requires at most circular (p -1)-shifts which can be completed in

at most 2p steps, since a circular q-shift on a p node ring takes min q, p-q  steps.

2. p steps of two direct-neighbor shifts followed by a multiply-and-add operation,

3. the final alignment which also can be completed in at most 2p steps.

2
 Throughout the paper, we assume that the matrix multiplication operation is to be performed such that this

initial mapping is preserved at the end of the operation.

NEW PARALLEL MATRIX MULTIPLICATION ALGORITHMS FOR WORMHOLE-

ROUTED ALL-PORT 2D/3D TORUS NETWORKS

The parallel cost Tpar of Cannon’s algorithm is given in Equation (2).

p

n
t

p

n
tpT

wspar

32

)(2  (2)

Here, it is also possible to reduce the cost by properly overlapping transmission and mul-

tiply-and-add operations, assuming that the multiplication of two blocks can be completed

by the time the next two blocks are received by the PE. In the next section, we will show

that it is possible to complete matrix multiplication in O  p
5

log time rather than O(p), at

the expense of longer messages.

DNS algorithm, proposed by Dekel, Nassimi and Sahni can be employed both in hyper-

cube and 3D torus architectures. This algorithm can use up to n
3
 processors to complete the

matrix multiplication operation in O(log n) time. DNS algorithm has four phases on 3D

torus assuming p processors are arranged into a 333 ppp  cube.

1. Assume that the matrices to be multiplied (i.e., A and B) and the result matrix C is to be

stored on the front face of the cube. There are 3 p planes of 33 pp  processors in the

cube. Copy column i of the matrix A into the column i of the i
th

 plane and row i of the

matrix B into the row i of the i
th

 plane. Regardless of the number of processors, this

phase is completed in a single step.

2. row-wise and column-wise propagation within each plane. This phase is completed in

 3
3

log p steps under all-port model since row-wise and column-wise propagation can be

executed in parallel.

3. multiply,

4. reduce the result onto the front face of the cube in  3
3

log p steps by adding relevant

terms.

The parallel cost Tpar of DNS algorithm is given in Equation (3).

p

n
t

p

n
tpT

wspar

3

3/2

2

3
3

)(log2  (3)

Note that, it is not possible to drop the (n
3
/p) term from the cost since multiply and add

operations are not to be interleaved and therefore it is not possible to overlap communica-

tion, multiply and add operations.

3. The Proposed Algorithms

In this section, we propose two algorithms for performing matrix multiplication on 2D to-

rus architecture with up to n
2
 processors and on 3D torus architecture with up to n

3
 proces-

sors. The time complexities of both algorithms are logarithmic.

3.1 Matrix Multiplication on 2D Torus with up to n
2
 Processors

Our 2D parallel matrix multiplication requires no alignment steps and completes in five

phases. We introduce the algorithm assuming single matrix element per processor assign-

BARANSEL, İMRE, ARTUNER

ment; its extension to matrix blocks is trivial. For a pp  processor array, we define p

concentration processors (CP) with no two CP are being in the same row or column. First,

the CP(i,j) gathers the elements of the i
th

row of A and broadcasts it to the processors on the

i
th

row in two consecutive phases. Then, CP(i,j) gathers the elements of the j
th

 column of B

and broadcasts it to the processors on the j
th

 column, also in two consecutive phases. Since,

computing C(i,j) requires the i
th

row vector of A and j
th

 column vector of B, all processors

acquire the required data in four phases. The last phase is the multiply-and-add phase after

which no data alignment is required.

The proposed algorithm differs from other proposals mainly in how row-wise and col-

umn-wise gathers and broadcasts are performed. Using the communication pattern given in

Figure 1, it is possible to complete each gather or broadcast in  p
5

log steps on a worm-

hole-routed, all-port torus
3
.

Figure 1. Gather/Broadcast Pattern

Although the proposed communication may seem somewhat complicated, the basic rule

is quite simple on a 55 torus, CP(i,j) has two neighbors located 2 hops away and two im-

mediate neighbors on row i. To communicate with the CP, the nodes located 2-hops away

use the links within the row while immediate neighbors take a detour via row (i-1) and row

(i+1). Since detour links are arranged to lay on the opposite direction to the within-row

links, the communication pattern is contention free. Column-wise communication is ar-

ranged similarly and consequently all CPs can perform row or column gathers or broadcasts

in parallel. Matrix Multiplication on 55 torus, using this broadcast pattern is illustrated in

Figure 2.

(a) (b) (c) (d)

 Figure 2. Matrix Multiplication on 55 torus; (a) Row-wise Gather (b) Row-wise

Broadcast (c) Column-wise Gather (d) Column-wise Broadcast;

 Local multiply-and-add phase is not shown;

3 For a good introduction to routing in general and wormhole routing in particular, see [5].

NEW PARALLEL MATRIX MULTIPLICATION ALGORITHMS FOR WORMHOLE-

ROUTED ALL-PORT 2D/3D TORUS NETWORKS

The parallel cost Tpar of the proposed algorithm is given in Equation (4).

p

n
t

p

n
tpT

w

p

spar

32)log1(

5
2

15
log4

5














 




 (4)

Here, it is not possible to drop the (n
3
/p) term from the cost since multiply and add opera-

tions are not to be interleaved and therefore it is not possible to overlap communication,

multiply and add operations. Also note that message lengths are different for gather and

broadcast phases.

The given seed broadcast pattern can be recursively extended to the powers of 5 by re-

placing each node by a 55 torus. Figure 3 shows the communication pattern for a 2525

torus. Other seeds are also be defined for 22, 33, 44 and 55 tori (Figure 4). These seed

patterns can be used in combination to support virtually all practical matrix sizes [4].

Figure 3. Communication pattern for 2525 torus

Figure 4. Seed communication patterns for 22, 33, 44 and 55 tori.

BARANSEL, İMRE, ARTUNER

F

f Gg h i j

. . H . .

. . . I .

. . . . J

K

. L . . .

k l Mm n o

. . . N .

. . . . O

P

. Q . . .

. . R . .

p q r Ss t

. . . . T

U

. V . . .

. . W . .

. . . X .

u v w x Yy

Aa b c d e

. B . . .

. . C . .

. . . D .

. . . . E

B1 B2 B3 B4 B5

A2

A3

A4

A5

A1

. . h . J

f . H . .

F . . i .

. g . I .

. G . . j

K . . n .

. l . N .

. L . . o

. . m . O

k . M . .

. Q . . t

. . r . T

p . R . .

P . . s .

. q . S .

u . W . .

U . . x .

. v . X .

. V . . y

. . w . Y

. b . D .

. B . . e

. . c . E

a . C . .

A . . d .

A B C D E

F G H I J

K L M N O

P Q R S T

U V X Y Z

a b c d e

f g h i j

k l m n o

p q r s t

u v x y z

(a) (b)

Matrix A Matrix B

(c) (d)

Figure 5.Communication patterns on a 555 torus for

(c) DNS algorithm (d) the proposed algorithm

3.2 Matrix Multiplication on 3D Torus with up to n
3
 Processors

The proposed 3D multiplication algorithm is basically an extension of our 2D multiplica-

tion algorithm onto the third dimension. On 3D torus, each processing element has six links

compared to those four on 2D torus, and proper use of these extra two links allow the

broadcast of elements of matrices A and B on the third dimension to be completed in the

same phase and in O  3

5
log p steps on a 333 ppp  torus.

NEW PARALLEL MATRIX MULTIPLICATION ALGORITHMS FOR WORMHOLE-

ROUTED ALL-PORT 2D/3D TORUS NETWORKS

Figure 5 shows the communication patterns on a 555 torus for DNS algorithm and the

proposed algorithm. In the figure, the elements of matrix A and matrix B are indicated with

upper-case and lower-case letters, respectively. The elements of matrix A are broadcasted

along the horizontal planes and the elements of matrix B along the vertical planes. The

broadcast pattern of the proposed algorithm is more efficient compared to the broadcast

pattern DNS algorithm since its time complexity is O  3

5
log p steps, rather than  3

3
log p of

DNS on a 333 ppp  torus. The parallel cost Tpar of the proposed algorithm is given in

Equation (5).

 
p

n
t

p

n
tpT

wspar

3

3/2

2

3
5

log12 












 (5)

4. Performance Analysis

Performance results are provided in Table 1 and Table 2. In computing speedups, Stras-

sen’s algorithm with the cost of n
2.807

 is taken as the best available serial implementation.

The proposed 2D algorithm yields a speedup similar to Cannon’s when the matrix block

size is large (e.g., 753.76 vs. 726.31 when block size is 125 for 625625 matrices). The

proposed algorithm performs better as the block size gets smaller (e.g., 373.38 vs.

15,364.08 when block size is 1 for 625625 matrices). The difference between the DNS

and the proposed 3D algorithms is not as great compared to 2D case. However, the pro-

posed algorithm is never slower than DNS and can provide up to 30% more speedups in

some cases. The results also indicate that as the ts/tw ratio of the systems gets smaller, the

difference between the algorithms also gets somewhat smaller both in 2D and 3D cases, but

not significantly.

5. Conclusions

In the last two decades, the number of processors in massively parallel supercomputers

have been increased from tens of processors to tens of thousands of processors and, as pro-

gressively larger number of processors became available, the size of the matrix sub-blocks

in matrix multiplication grew to be smaller for a given problem size. Consequently, new

algorithms which can work efficiently with smaller blocks are required to exploit the

processing power offered by the modern massively parallel processors. At the same time,

torus interconnection networks gained wide-spread popularity in the industry. In this paper,

we proposed a new parallel matrix multiplication algorithm for 2D and 3D torus architec-

tures which performs better than the competitive algorithms especially as the size of the

matrix sub-blocks gets smaller.

BARANSEL, İMRE, ARTUNER

Matrix

Size
p

Block

Size

(n2/p)

ts/tw=150/1 ts/tw =450/1

Speed up for

Cannon

Speed up for

2D Proposed

Speed up for

Cannon

Speed up for 2D

Proposed

2525

25 25 4.80 5.50 1.77 3.08

125 5 2.42 7.22 0.83 2.83

625 1 1.11 6.52 0.37 2.28

125125

25 625 9.38 8.92 9.21 8.80

125 125 41.13 38.54 34.88 35.35

625 25 87.91 130.92 32.39 92.95

3125 5 44.39 272.63 15.12 132.13

15625 1 20.38 343.84 6.82 131.78

625625

25 15625 7.16 7.08 7.16 7.08

125 3125 35.42 34.55 35.36 34.52

625 625 171.89 163.68 168.80 162.77

3125 125 753.76 726.31 639.12 704.53

15625 25 1,610.86 2,793.86 593.47 2,444.93

78125 5 813.35 8,085.38 277.08 5,456.26

390625 1 373.38 15,364.08 125.01 7,507.73

31253125

25 390625 5.28 5.27 5.28 5.27

125 78125 26.35 26.22 26.35 26.22

625 15625 131.18 129.67 131.16 129.66

3125 3125 649.05 632.92 647.96 632.73

15625 625 3,149.85 3,003.45 3,093.27 2,998.43

78125 125 13,812.49 13,452.24 11,711.77 13,335.56

390625 25 29,518.61 54,001.23 10,875.28 51,917.16

1953125 5 14,904.50 180,410.04 5,077.36 156,759.35

9765625 1 6,842.06 463,313.24 2,290.80 323,880.05

Table 1. Performance Results for 2D Algorithm

Mat

rix

Size

p

Block

Size

(n2/p2/3)

ts/tw=150/1 ts/tw =450/1

Speed up for

DNS

Speed up for

3D Proposed

Speed up for

DNS

Speed up for

3D Proposed

25

25

125 25 10.33 10.18 4.21 4.15

15625 1 8.10 9.26 2.71 3.10

125

125

125 625 41.20 41.08 38.75 38.60

15625 25 580.30 654.62 227.34 258.55

1953125 1 519.97 636.21 174.17 213.13

625

625

125 15,625 34.97 34.95 34.95 34.93

15625 625 3,365.34 3,475.96 3,064.21 3,192.53

1953125 25 38,338.68 46,213.13 14,758.63 17,955.42

244140625 1 36,673.50 46,641.31 12,282.96 15,622.93

3125


3125

125 390,625 26.28 26.28 26.28 26.28

15625 15,625 3,132.52 3,153.27 3,129.40 3,150.51

1953125 625 278,182.03 295,862.39 246,937.82 266,550.94

244140625 25 2,746,617.80 3,443,838.20 1,047,073.45 1,324,553.15

30517578125 1 2,7313,43.54 3,561,608.73 914,742.69 1,192,905.34

Table 2. Performance Results for 3D Algorithm

NEW PARALLEL MATRIX MULTIPLICATION ALGORITHMS FOR WORMHOLE-

ROUTED ALL-PORT 2D/3D TORUS NETWORKS

References

[1] D. A. Bini. Fast Matrix Multiplication. In: Leslie Hogben, Editor, Handbook of Linear Al-

gebra, Chapman & Hall/CRC press, Boca Raton (2007) (Chapter 47).

[2] L. E. Cannon. A cellular computer to implement the kalman filter algorithm. Ph.D. Thesis,

Montana State University, 1969.

[3] A. Gramma, A. Gupta, G. Karypis and V. Kumar. Introduction to Parallel Computing,

Second Edition, Addison Wesley, 2003.

[4] K. M. İmre, C. Baransel and H. Artuner. Efficient and Scalable Routing Algorithms for

Collective Communication Operations on 2D All-Port Torus Networks. Submitted for pub-

lication, 2010.

[5] L.M. Ni and P.K. McKinley. A survey of wormhole routing techniques in direct networks.

Computer , vol.26, no.2, pp.62-76, Feb 1993.

[6] V. Strassen. Gaussian Elimination is not Optimal. Numer. Math. 13, p.354-356, 1969.

[7] S. Winograd. On multiplication of 2 × 2 matrices. Linear Algebra and Its Applications,

4:381–388, 1971.

